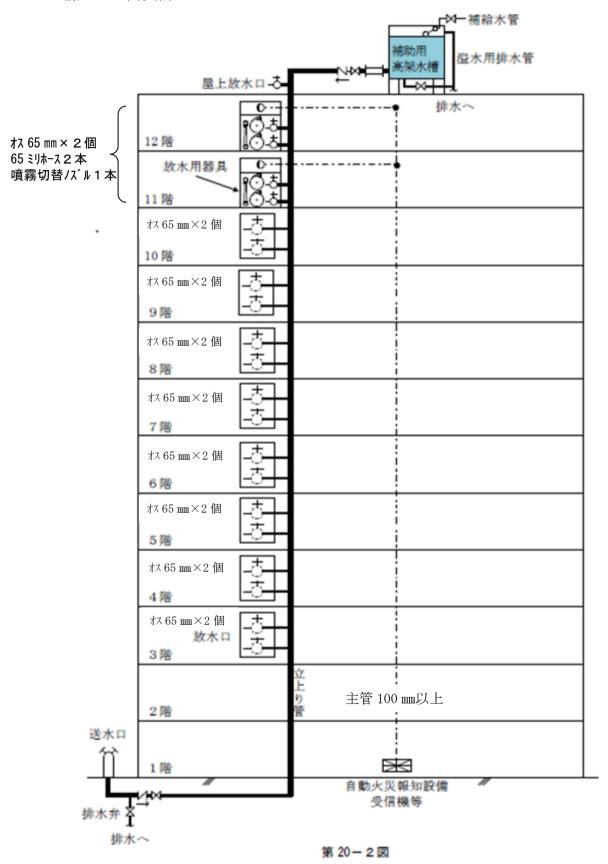
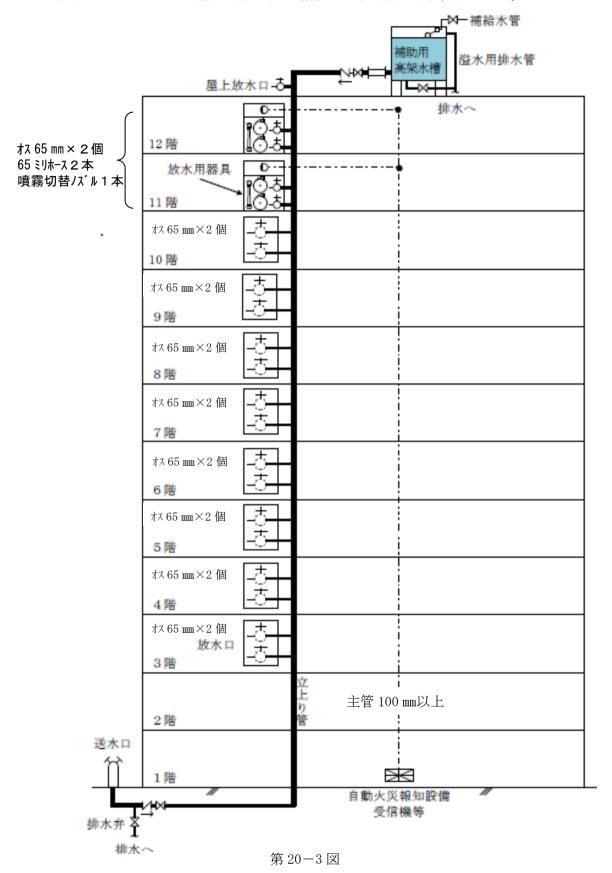
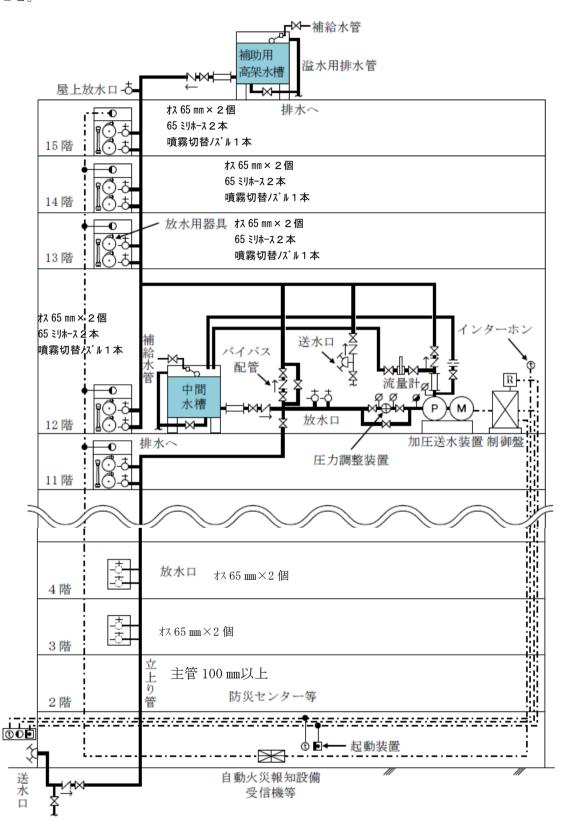

第20 連結送水管

1 主な構成


(1) 高層階以外に設ける連結送水管 地階を除く階数が11未満に設ける方式のもの(第20-1図参照)


第20-1図

(2) 高層階に設ける連結送水管


地階を除く階数が 11 以上(以下この項において「高層階」という。)に設ける方式のもの(第 20-2 図参照)

(3) 非常用エレベーターが設置されている高層階に設ける方式のもの(第20-3図参照) ※非常用エレベーターの有無に係らず11階以上に放水器具を設置すること。

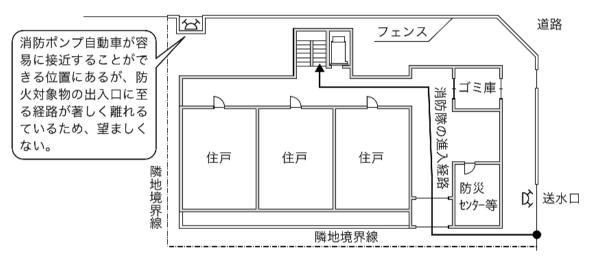
(4) 高さ70mを超える高層階に設ける方式のもの(第20-4図参照) ※非常用エレベーターが設置されている場合であっても、11階以上に放水用器具を設置すること。

第 20 - 4 図

2 高層階以外に設ける連結送水管

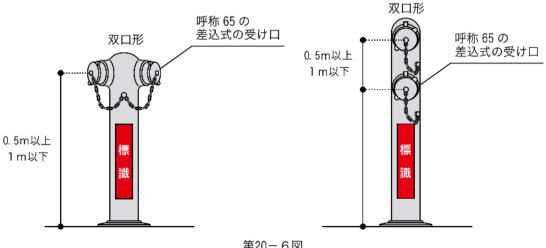
地階を除く階数が11未満に設ける連結送水管は、次によること。

(1) 送水口


送水口は、政令第29条第2項第3号並びに省令第31条第1号及び第3号から第4号の 2までの規定によるほか、次によること。

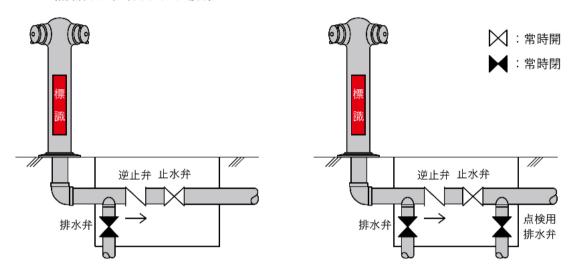
ア機器

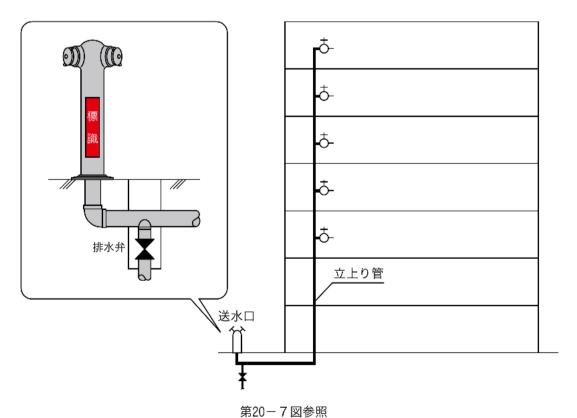
- (ア) 送水口は、送水口告示に適合するもの又は認定品のものとすること。
- (イ) 送水口のホース結合金具は、差込式受け口のものとすること。


イ 設置方法

- (ア) 送水口の周囲には、消防隊が消防用ホースの接続作業を行う際の空間が設けられ ていること。
- (イ) 送水口は、消防隊が防災センター等及び送水口が設けられている階段室、非常用 エレベーターの乗降ロビーに容易に至ることができる位置とするなど消防隊の活動 に有効な位置とすること。 (第20-5図参照)

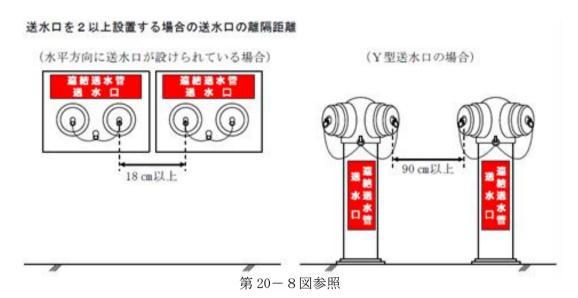
第20-5図


(ウ) 省令第31条第1号に規定する「地盤面からの高さが0.5m以上1m以下」とは、 第20-6図の例に示すとおり、地盤面から送水口のホース接続口中心までの距離と すること。


第20-6図

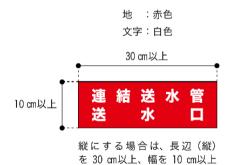
- (エ) 配管内を常時充水する場合の送水口には、止水弁及び逆止弁を送水口の直近の容易に点検及び操作できる位置に設けること。(第20-7図参照)
- (オ) 配管の最低部には、排水弁を設けること。(第20-7図参照) なお、排水弁は、止水弁及び逆止弁の一次側に設けること(点検用の排水弁を止 水弁及び逆止弁の二次側に設けることは、差し支えない。)。

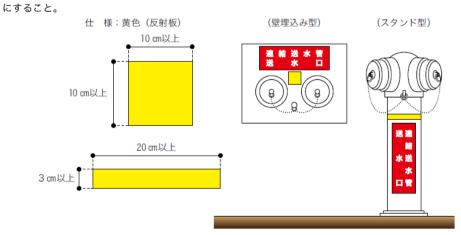
(配管内を常時充水する場合)



(配管内を乾式とする場合)

- 6 -


(カ) 送水口を2以上又は他の消防用設備等の送水口と並列して設置する場合は、次によること。(第20-8図参照)



ウ 表示

省令第31条第4号に規定する連結送水管の送水口である旨の標識は、次によること。 (第20-9図参照)

- (ア) 標識の大きさは、短辺 10cm 以上、長辺 30cm 以上とすること。
- (イ) 地を赤色、文字を白色とすること。
- (ウ) 標識のそばに黄色反射板を設けること。

第20-9図

(2) 配管等

配管等は、省令第31条第5号の規定によるほか、次によること。

ア配管

省令第31条第5号ロの規定によるほか、次によること。

- (ア) 配管の接合のため加工した部分又は腐食環境で使用される配管等の部分には、加工部分に防錆剤を塗布するなど適切な防食処理を施すこと。なお、腐食性雰囲気に配管する場合の防食処理については、当該工事の仕様書によること。
- (イ) 配管内の消火水が凍結するおそれのある部分又は配管外面が結露するおそれのある部分(浴室、厨房等の多湿箇所(厨房の天井内は含まない。))の配管等には、 保温材、外装材及び補助材により保温を行うこと。
- (ウ) 配管等は、共同溝等への敷設を除き、原則として埋設しないこと。やむを得ず埋設する場合には、日本水道鋼管協会の WSP-041 (消火用硬質塩化ビニル外面被覆鋼管) 又は WSP-044 (消火用ポリエチレン外面被覆鋼管) を用い、接続部分は専用継手(異種鋼管にあっては絶縁性のものとする。) により施工すること。

なお、省令第31条第5号ロただし書きに規定される設計送水圧力(以下この項において「設計送水圧力」という。)が、1.0 MPa を超える場合は、JIS G 3454 (圧力配管用炭素鋼鋼管)を使用したものとすること。

- (エ) 配管の吊り及び支持は、次によること。
 - a 横走り配管は、吊り金物による吊り又は形鋼振れ止め支持とすること。この場合の鋼管及びステンレス鋼鋼管の支持間隔等は、第20-1表により、行うこと。

第20-1表

呼び径 (A) 分 類	15	20	25	32	40	50	65	80	100	125	150
吊り金物による吊り		2.0 m以下								3.0 n	n以下
形鋼振れ止め支持		_						8.0 m以下			m以下

b 立管は、形鋼振れ止め支持又は固定とすること。この場合の鋼管及びステンレス鋼鋼管の支持する箇所は、第20-2表により、行うこと。

第20-2表

分	類	支持する箇所
固	定	最下階の床又は最上階の床
形鋼振れ止めま	5持	各階 1 箇所

- (注)1 呼び径80A以下の配管の固定は、不要としても良い。
 - 2 床貫通等により振れが防止されている場合は、形鋼振れ止め支持を3階ごとに1箇所としても良い。
- (オ) 合成樹脂管等の基準に適合するもの(最高使用圧力が1.6MPaを超えるものに限る。)を地中埋設配管とする場合にあっては、規則第31条第5号ロ及びハに規定する「同等以上の強度、耐食性及び耐熱性を有するもの」として、合成樹脂製の管及び管継手の基準(平成13年消防庁告示第19号。以下「合成樹脂管等告示」という。)に適合するもの又は認定品のものを取り扱って差し支えないもの。ただし、設計送水圧力が1.6MPaを超えない場合に限る。

なお、埋設部分は、配管及び管継手のみとし、バルブ類及び計器類は埋設しないこと。

また、埋設された配管が、重量物の通過その他外圧の影響を受けて折損その他の 事故により漏水しないよう、埋設深さは配管の上端より 30cm 以上、車両が通行する 部分は 60cm (公道に準ずる車両通行部分は 120cm) 以上とすること。

イ 管継手

省令第31条第5号ハの規定によるほか、次によること。

(ア) 管継手は、省令第31条第5号ハの表に掲げるもの、又はこれと同等以上の強度、耐食性及び耐熱性を有するものとして、金属製管継手等告示に適合するもの若しくは認定品のものとすること。

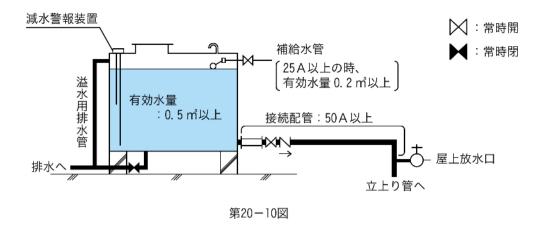
この場合、設計送水圧力が、1.0MPa を超える場合に使用する管継手は、呼び圧力16K又は呼び圧力20Kのものを設けること。

- (イ) 可とう管継手は、金属製管継手等告示に適合するもの若しくは認定品のものとすること。
- (ウ) 可とう管継手(配管の伸縮、変位、振動等に対応することを目的として設けるベローズ形管継手、フレキシブル形管継手、ブレード型等をいう。)は、認定品とすること。
- (エ) 合成樹脂管等の基準に適合するもの(最高使用圧力が 1.5 MPa を超えるものに限る。)を地中埋設配管又はピット内配管とする場合にあっては、規則第 31 条 5 号ロ及びハに規定する「同等以上の強度、耐食性及び耐熱性を有するもの」として取り扱って差し支えないもの。

ただし、設計送水圧力が 1.5 MPa を超えない場合に限る。

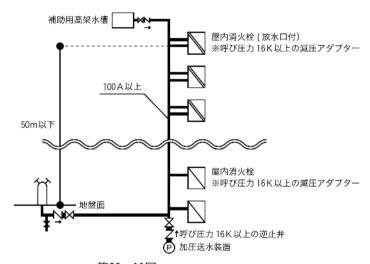
ウバルブ類

省令第31条第5号二に規定するほか、次によること。


- (ア) バルブ類を設ける場合の当該バルブ類の最高使用圧力は、設計送水圧力で送水した場合における当該場所の圧力値以上の仕様のものを設けるとともに、設計送水圧力が 1.0MPa を超える場合に用いる弁類は、次のいずれかによること。
 - a JIS B2071 (鋳鋼フランジ形弁) の呼び圧力 20K のもの
 - b 認定品のもの(呼び圧力 16K 又は呼び圧力 20K のもの)
 - c JPI (石油学会規格) の呼び圧力 300psi のもの(呼び圧力 20K 相当)
- (イ) 材質は、省令第31条第5号ニ(イ)に規定するもの、又はこれと同等以上の強度、耐食性及び耐熱性を有するものとして、金属製管継手等告示に適合するもの若しくは認定品のものとすること。
- (ウ) 開閉弁、止水弁及び逆止弁は、省令第31条第5号ニ(ロ)に規定するもの、又はこれと同等以上の強度、耐食性及び耐熱性を有するものとして、金属製管継手等告示に適合するもの若しくは認定品のものとすること。また、配管内を常時充水する場合の送水口には、止水弁及び逆止弁を送水口の直近に設けること。
- (エ) バルブ類は、容易に点検できる場所に設け、かつ、当該バルブ類である旨の表示 を直近の見易い位置に設けること。
- (オ) 開閉弁又は止水弁には、「常時開」又は「常時閉」の表示をすること。

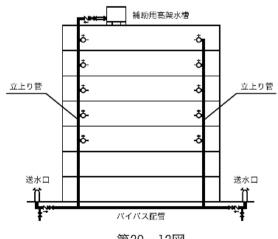
エ 配管内の充水

原則として、配管は常時充水とし、次の補助用高架水槽により常時充水しておくこと。 (第 20-10 図参照)


- (ア) 設置場所、機器及び設置方法は、第2屋内消火栓設備5(4)ア((ア)及び(ウ)を除く。)を準用すること。
- (イ) 補助用高架水槽から立上り管までの配管は、呼び径 50A 以上とすること。
- (ウ) 有効水量は、0.5 m²以上とすること。

ただし、当該水槽の水位が低下した場合に、呼び径 25A 以上の配管により自動的に給水できる装置を設けた場合には、当該有効水量を $0.2~\mathrm{m}^2$ 以上とすることができる。

オ 屋内消火栓設備の立上り管との配管兼用


省令第31条第5号イただし書きに規定する取り扱いは、第2屋内消火栓設備5(5)に よること。 (第20-11図参照)

第20-11図

カ 複数の立管の接続

省令第31条第1号の「連結送水管の立管の数以上の数」の規定により、同一棟に複数 の立上り管がある場合は、それぞれ送水口を設け、かつ、バイパス配管により立上り管 を相互に接続すること。 (第20-12図参照)

第20-12図

(3) 放水口

放水口は、政令第29条第2項第1号及び省令第31条第2号から第4号の2までの規定によるほか、次によること。

ア 格納箱

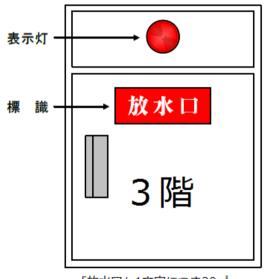
- (ア) 格納箱の扉は、鍵等を用いることなく容易に開閉できるものであること。
- (イ) 格納箱の材質は、鋼板製 (厚さ 1.6 mm以上) 又はこれと同等以上の強度、耐食性及び耐熱性を有するものとすること。

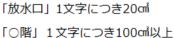
イ 消火栓弁

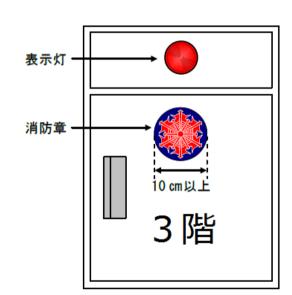
- (ア) 放水口は、消火栓弁とすること。
- (イ) 消火栓弁は、屋内消火栓等告示に適合するもの又は認定品のもの若しくは消防防災用設備機器性能評定委員会((一財)日本消防設備安全センターに設置)において性能評定されたものとすること。
- (ウ) 結合金具は、呼称 65 の差込式の単口 2 口とすること。このとき、放水口が格納箱 に干渉し、操作の支障にならないよう配置すること。

ウ 赤色の灯火

11 階以上の階に設ける放水口又はその格納箱の上部には、赤色の灯火を設けること。

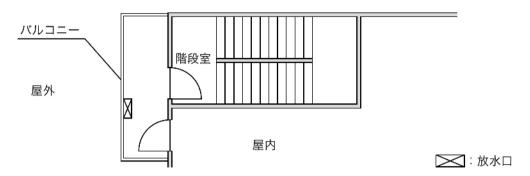

エ 表示


省令第31条第4号に規定する放水口である旨の標識を次により、放水口の見やすい箇所又は格納箱に表示すること。(第20-13図参照)

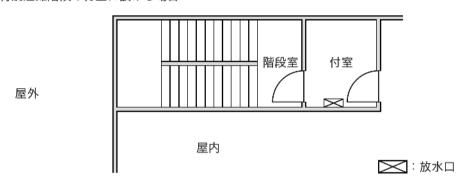

- (ア) 「放水口」又は「消防章」及び「階数」を表示した標識とすること。
- (イ) 放水口の表示文字の大きさは、1字につき20cm以上、消防章の大きさは、直径10cm以上とし、色は地を赤、文字を白とすること。

また、階数の表示にあっては1字につき100 cm以上とすること。

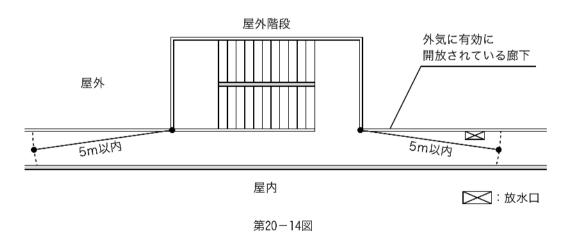
(例) 格納箱に表示する場合



第 20-13 図


才 設置位置

政令第29条第2項第1号に規定する「その他これらに類する場所で消防隊が有効に消火活動を行うことができる位置」とは、特別避難階段のバルコニー若しくは付室又は外気に有効に開放されている部分で、かつ、直通階段から5m以内の位置をいうものであること。(第20-14図参照)


(例1)特別避難階段のバルコニーに設ける場合

(例2)特別避難階段の付室に設ける場合

(例3) 屋外階段から5m以内の外気に有効に開放されている廊下に設ける場合

カ 設置方法

- (ア) 使用上の障害となるものがなく、格納箱及び消火栓弁の開閉が容易であること。
- (イ) 非常用エレベーター乗降ロビー又は特別避難階段の付室に放水口を設置する場合、 乗降ロビー又は特別避難階段の付室から屋内に通じる出人口の防火戸の下方には、 第2屋内消火栓設備7(5)オの例により、ホース通過孔を設けること。

3 高層階に設ける連結送水管 高層階に設ける連結送水管は、次によること。

(1) 送水口

送水口は、政令第29条第2項第3号並びに省令第31条第1号及び第3号から第4号の2までの規定によるほか、前2(1)を準用すること。

(2) 配管等

配管等は、省令第31条第5号の規定によるほか、前2(2)を準用すること。

(3) 放水口

放水口は、政令第29条第2項第1号並びに省令第31条第2号から第4号の2までの規定によるほか、前2(3)を準用すること。

なお、放水口は、ホース格納箱の内部に設けること。

(4) ホース格納箱

政令第29条第2項第4号ハに規定する放水器具を格納した箱(以下この項において「ホース格納箱」という。)は、次によること。

ア機器

- (ア) ホース格納箱は、第8屋外消火栓設備6(2)の屋外消火栓箱に準じた箱に収納しておくこと。
- (イ) ホース格納箱に、非常コンセント設備、非常電話、発信機等を内蔵する形式のものは、当該非常コンセント等に水の飛まつを受けない構造とすること。

イ 表示

省令第31条第6号ニに規定するホース格納箱である旨の標識を次により、格納箱の見やすい箇所に表示すること。(第20-15図参照)

- (ア) 「ホース格納箱」と表示した標識とすること。
- (イ) 格納箱の表示文字の大きさは、1字につき20㎡以上とすること。

ウ設置位置

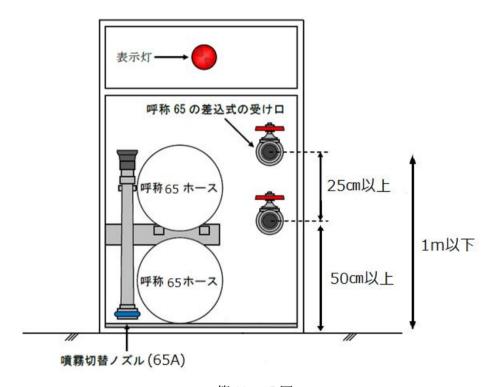
ホース格納箱は、省令第31条第6号ロ及びハの規定にかかわらず、次によること。

- (ア) 11 階以上のすべての階に設けること。
- (イ) 設置位置は、前2(3)オを準用すること。
- 工 設置方法

設置方法は、前2(3)力を準用すること。

(5) 放水用器具

放水用器具は、省令第31条第6号ロの規定にかかわらず、次によること。(第20-15 図参照)


ア 省令第30条の4第2項に規定する「非常用エレベーターが設置されており、消火活動 上必要な放水用器具を容易に搬送することができるものとして消防長又は消防署長が認 める建築物」とは、非常用エレベーター乗降ロビーに放水口が設置されている防火対象 物をいう。

イーノズル

- (ア) ノズルは、噴霧ノズルを1本以上設けること。
- (イ) 消防用ホースに結合する部分は、結合金具の規格省令に規定する呼称 65 に適合する差込式受け口とすること。
- (ウ) 噴霧ノズルの性能は、ノズルの先端圧力が 0.35MPa で直状放水した場合、3000/min 以上(有効射程 10m以上)及びノズル先端圧力が 0.6MPa で霧状放水した場合に、展開角度 90°で、3500/min 以上の量の放水量が得られるものであること。
- (エ) ノズルは、屋内消火栓等告示の基準に適合するもの又は認定品のものとすること。

ウ 消防用ホース

- (ア) 消防用ホースは、消防用ホースの規格省令に規定する平ホースとすること。
- (イ) 消防用ホースは、消防用ホースの規格省令に規定する呼称 65 (使用圧 1.3MPa 以上。ただし、加圧送水装置が設置されている防火対象物にあっては、使用圧 1.6MPa 以上) のもので、長さ 20mのものを 2 本以上設けること。

第20-15図

(6) 加圧送水装置 (ポンプを用いるもの)

省令第31条第6号イに規定する加圧送水装置は、次によること。

ア 設置場所

- (ア) 省令第31条第6号イ(二)に規定する「火災等の災害による被害を受けるおそれが 少ない箇所」は、第2屋内消火栓設備3(1)イを準用すること。
- (イ) 機器の点検ができる空間、照明設備(非常用の照明装置を含む。)、排水及び換気設備が確保できる場所であること。
- (ウ) ポンプの設置場所には、当該ポンプの設置場所である旨の表示を行うこと。

イ 機器

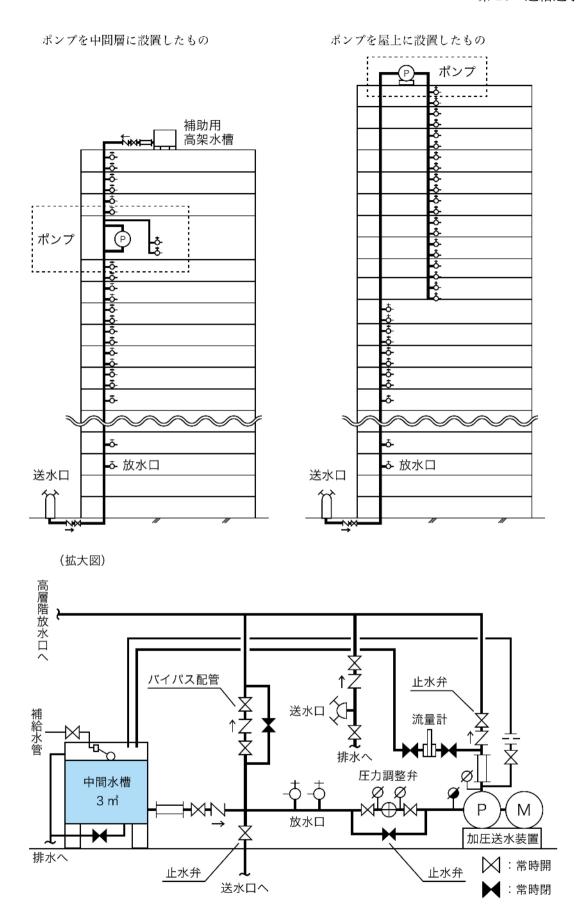
- (ア) 機器は、第2屋内消火栓設備3(2)を準用すること。
- (イ) ポンプの吐出量は、省令第31条第6号イ(イ)の規定にかかわらず、明石市は1,840 0/min以上とすること。
- (ウ) 設計送水圧力で送水した場合にポンプに加わる押込圧力は、当該ポンプの許容押 込圧力の範囲以内とすること。

ウ 設置方法

(ア) 省令第31条第6号イ(二)に規定する「送水上支障のないように」とは、送水口における設計送水圧力を1.6MPa以下に設定して、5に規定する放水圧力が得られるように設けるこというものであること。

また、高さ 70m 以下の防火対象物であっても、設計送水圧力が 1.6MPa を超えるものにあっては、ポンプを設けること。

- (イ) ポンプの締切揚程に押込揚程を加えた値が170m以上となる場合には、複数のポンプを設けて直列運転とすること。
- エ ポンプ運転時の放水時に 1.6MPa を超える放水口には、放水時に 1.6MPa を超えない措置を講じること。

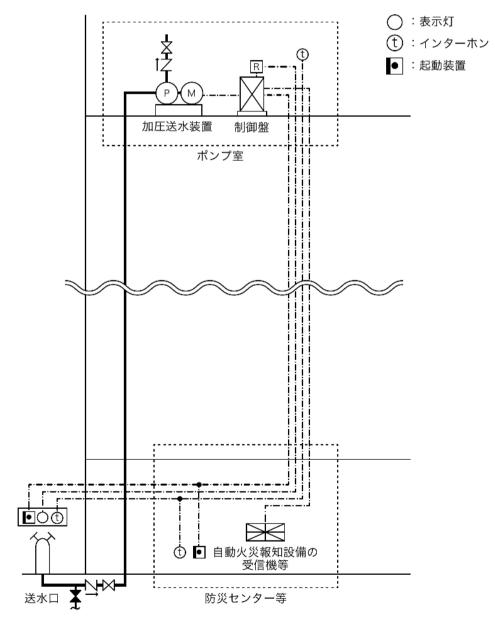

才 耐震措置

耐震措置は、第2屋内消火栓設備3(5)を準用すること。

- カ 配管等は、次により設けること。 (第20-16図参照)
 - (ア) ポンプの吸水側配管と吐出側配管との間には、バイパス配管(中継ポンプが停止した場合の中継ポンプを迂回するための配管をいう。)を設け、かつ、当該バイパス配管には、逆止弁を設けること。
 - (イ) ポンプ周りの配管には、加圧送水装置による送水が不能となった場合の措置として、可搬ポンプ等によって送水できるよう一次側には放水口を、二次側には送水口を設置すること。
 - (ウ) ポンプー次側及び二次側の止水弁は、当該ポンプと主管を分離できるように主管側に設置すること。
 - (エ) ポンプー次側の配管には、圧力調整弁及び止水弁を設置し、バイパス配管とすること。

ただし、設計送水圧力を 1.6MPa として送水した時にポンプの押込圧力が当該ポンプの許容押込圧力範囲となる場合は、この限りでない。

- (オ) ポンプ二次側の配管は、立管部分を堅固に支持し、吐出側の逆止弁及び止水弁の 重量がポンプにかからないようにすること。
- キ 中継ポンプの吸込側の配管に、次により中間水槽を設けること。
 - (ア) 有効水量は、3 m²以上とすること。
 - (イ) 構造は、第2屋内消火栓設備4(3)イの例によること。



第20-16図

ク 起動装置等

起動装置は、省令第31条第6号イ(ハ)の規定によるほか、次によること。(第20-17図参照)

- (ア) ポンプの起動装置は、送水口より送水した水圧によって起動するもの又は直接操作できるものであり、かつ、送水口の直近又は防災センター等に設けられた操作部から遠隔操作で起動することができるものであること。
- (イ) ポンプが起動した場合は、防災センター等で起動が確認できるものとすること。
- (ウ) ポンプの設置場所、送水口及び防災センター等には、当該場所の3ヶ所で相互に 連絡できる装置(インターホン等。以下この項において「連絡装置」という。)を 設置すること。
- (エ) 送水口の直近には、ポンプが起動している旨がわかる表示灯(点滅ランプ等)を 設けること。
- (オ) 起動装置及び連絡装置は、格納箱に収納し、いたずら等により操作できない措置を講じること。

第20-17図

ケ表示

送水口又はその直近には、ポンプ運転時に最上階において必要なノズル先端圧力を得るための設計送水圧力を見やすい個所に、次により表示すること。(第 20-18 図参照)なお、送水圧力でポンプが起動する場合は、送水圧力を併せて表示すること。

- (ア) 標識の大きさは、短辺 7cm 以上、長辺 20cm 以上とすること。
- (イ) 地を赤色、文字を白色とすること。

(ポンプ運転時に最上階において必要なノズル先端圧力を得るための送水圧力)

第20-18図

コ 図書の掲出等

(ア) 防災センター等には、配管系統、止水弁等及びポンプ設置位置を明示した図面等 を備えておくこと。

なお、防災センター等に設置される防災監視盤等が画面表示できる方式のものは、 配管系統、ポンプの設置位置を当該画面に表示できるものであること。

(イ) ポンプの設置場所には、当該ポンプによる送水が不能となった場合の措置を明示 したポンプ回りの配管図等を掲出すること。

サ 表示及び警報

次の表示及び警報(ベル、ブザー等)は、防災センター等にできるものであること。

- (ア) 加圧送水装置の作動の状態表示(ポンプ等の起動、停止等の運転状況)
- (イ) 加圧送水装置の電源断の状態表示及び警報
- (ウ) 中間水槽の減水状態の表示及び警報(中間水槽に減水警報装置を設けた場合に限る。

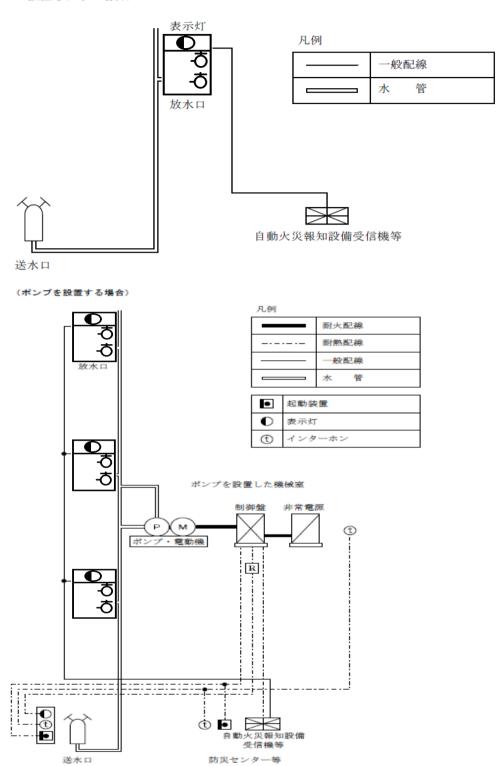
4 貯水槽等の耐震措置

省令第31条第10号の規定による貯水槽等の耐震措置は、第2屋内消火栓設備11を準用すること。

5 非常電源、配線等

非常電源、配線等は、省令第31条第7号の規定によるほか、次によること。

(1) 非常電源等


非常電源、非常電源回路の配線等は、第23非常電源によること。

(2) 常用電源回路の配線

常用電源回路の配線は、第2屋内消火栓設備12(2)を準用すること。

(3) 非常電源回路及び操作回路の配線は、第20-19図の例によること。

(ポンプが設置されない場合)

6 総合操作盤

省令第31条第9号に規定する総合操作盤は、第24総合操作盤によること。

第20-19図

7 連結送水管の水力計算

連結送水管の設計送水圧力の水力計算は、次の計算式の例によること。この場合、摩擦損失水頭(m)を摩擦損失水頭換算圧 (MPa) に換算する場合は、1.0mを0.0098 MPa で換算することとし、設計送水圧力は、1.6 MPa 以下とすること。

[計算式]

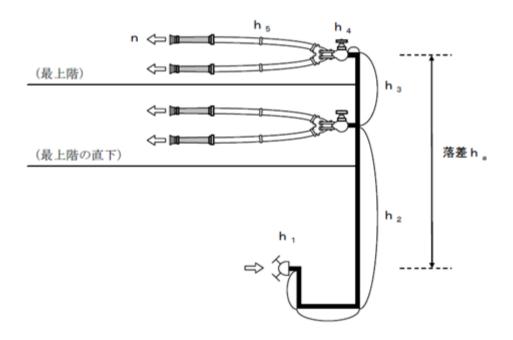
摩擦損失水頭=配 管 等 の 摩 擦 損 失 水 頭 + 背圧 + 放水圧力

 $(h_1+h_2+h_3+h_4+h_5)$ (h_a) (n)

設計送水圧力=摩擦損失水頭× 0.0098

ア 配管等の摩擦損失水頭 (m): (h1+h2+h3+h4+h5)

h 1:送水口の摩擦損失水頭


h 2:4線分の流量時の主管及び管継手等の摩擦損失水頭 h 3:2線分の流量時の主管及び管継手等の摩擦損失水頭

h 4:放水口の摩擦損失水頭

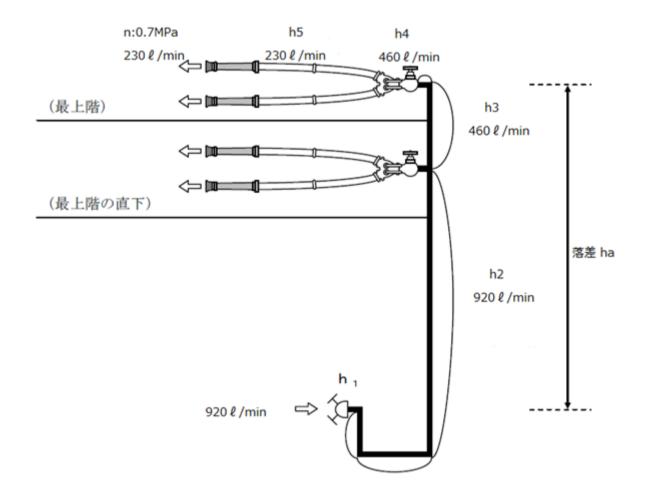
h5:消防用ホースの摩擦損失水頭

イ 落差 (m): ha (送水口から最上階の放水口までの高さによる損失)

ウ ノズル先端圧力 (m): n (ノズルの先端における放水圧力)

※ 計算式は、計算上において、消防ポンプ自動車から設計送水圧力(最大 1.6 MPa)により送水口より送水された圧力水が最低となる最上階において一の放水口からホース 2 線を延長し、最上階の直下階において一の放水口からホース 2 線を延長して、それぞれのノズルから省令第 31 条第 5 号口かっこ書きで規定する放水圧力で放水することとしたものである。

○設定条件


クワドラノズルを使用するものとして、ノズル先端圧力 0.7MPa で放水量 9200/min を放水するものとする。

h 1 : 送水口 (9200/min)

h2、h3:主管及び管継手等の流量(送水口から最上階の直下階の分岐までは9200/min、

最上階から直下階の分岐までは 4600/min)

h 4 : 放水量の流量 (460ℓ/min) h 5 : ホースの流量 (20m)

(参考)

圧力配管用炭素鋼管(日本産業規格 G3454)スケジュール 40 に応じた管継手及びバルブ類を使用する場合

	*	大きさの呼び A		25	32	40	50	65	80	90	100	125	150	200
種兒	訓													
		45° :	エルボ	0.4	0.5	0.6	0.7	0.9	1.1	1.2	1.4	1.8	2.1	2.8
	ね	90° :	エルボ	0.8	1.1	1.2	1.6	2	2.4	2.6	3.1	3.8	4.5	6
	じ 込	リタンベルト (180°)		2	2.6	3	3.9	4.8	5.7	6.6	7.5	9.3	11	14.6
管	み式	チーズ3 ス(分)		1.6	2.1	2.5	3.2	4	4.7	5.2	6.1	7.6	9.1	12
継手		45° エルボ	ロング	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.8	0.9	1.2
	溶	90°	ショート	0.4	0.6	0.7	0.9	1	1.1	1.3	1.4	2	2.4	3.2
	接出	エルボ	ロング	0.3	0.4	0.5	0.6	0.8	0.9	1.1	1.2	1.5	1.8	2.4
	式	チーズ3 ス(分)		1.2	1.6	1.9	2.4	3	3.5	3.9	4.6	5.7	6.8	9
		仕り	刀弁	0.2	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.8	1	1.3
 バ)	レブ	玉形弁		9	11.8	13.7	17.6	22	26	29.1	34	42	50.3	66.6
	類	アングル弁		4.6	5.9	6.9	8.8	11	13.1	14.6	17.1	21.2	25.2	33.4
		逆」 (スイン	E弁 /グ型)	2.3	3	3.4	4.4	5.5	6.5	7.3	8.5	10.5	12.5	16.6

送 水 口 38.3	3
------------	---

配管の摩擦損失水頭表 (100m当たり)

呼び径 流量 (/min	65	80	100	125	150	200
400	8.04	3. 51	0.94	0. 33	0.14	_
800	28. 97	12.67	3.40	1. 21	0.51	0.13
1000	43.77	19. 14	5. 14	1.82	0.77	0. 20
1200	61.33	26. 82	7. 20	2. 55	1.08	0. 28
2000	157. 80	69.00	18.53	6. 56	2.78	0.71
2400	221. 11	96. 69	25.97	9. 20	3.90	0.99

一般配管用ステンレス鋼管(日本産業規格 G3448)に応じたバルブ類を使用した場合

種別	大きさの呼び A 種別		32	40	50	65	80	100	125	150	200
	仕切弁	0.2	0.3	0.3	0.4	0.5	0.6	0.8	1	1.2	1.5
バルブ	玉形弁	12.1	15.4	17.7	22	28	32.5	42.2	51.2	60.9	80.4
類	アングル弁	6	7.7	8.8	11	14	16.3	21.1	26	30.4	40.2
	逆止弁 (スイング型)	3	3.9	4.4	5.5	7	8.1	10.5	13	15.2	20.1

送 水 口	38. 3
-------	-------

配管の摩擦損失水頭表 (100m当たり)

呼び径 流量 ℓ/min	65	80	100	125	150	200
400	13. 01	3. 99	0.55	0. 20	0.09	_
800	46. 90	14. 38	1.97	0.71	0.33	0.08
1000	70. 86	21.72	2.97	1.08	0.50	0. 13
1200	99. 29	30. 44	4. 16	1.51	0.70	0. 18
2000	255. 46	78. 32	10.70	3. 89	1.79	0.46
2400	357. 94	109. 73	15.00	5. 45	2. 51	0.65

配管用ステンレス鋼管(日本産業規格 G3459)スケジュール+s に応じた管接手及びバルブ類を使用した場合

		大きさの呼び A		25	32	40	50	65	80	90	100	125	150	200
種別	IJ													
			エルボ	0.5	0.6	0.7	0.9	1.1	1.3	1.6	1.8	2.2	2.6	3.4
	ね	90°:	エルボ	1	1.3	1.5	1.9	2.4	2.8	3.3	3.7	4.6	5.4	7.2
	じ 込	リタン・ (180	ベルト O°)	2.4	3.1	3.6	4.6	5.9	7	8	9.1	11.1	13.2	17.4
	み式	チーズ? ス(分)		2	2.5	2.9	3.8	4.8	5.7	6.6	7.8	9.1	10.9	14.3
管		45° エルボ	ショート	0.3	0.3	0.4	0.5	0.6	0.8	0.9	1	1.2	1.5	1.9
継手			ロング	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.7	0.9	1.1	1.4
	溶接	90°	ショート	0.5	0.7	0.8	1	1.3	1.5	1.8	2	2.4	2.9	3.8
	式	エルボ	ロング	0.4	0.5	0.6	0.7	1	1.1	1.3	1.5	1.8	2.2	2.9
		チーズ? ス(分)		1.5	1.9	2.2	2.8	3.6	4.3	4.9	5.6	6.9	8.2	10.8
		仕り	<u> </u>	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.8	1	1.1	1.5
ر از کر	レブ	玉形弁		11.1	14	16.3	20.8	26.9	31 .8	36.5	41.4	50.8	60.5	79.6
类		アンク	ル弁	5.8	7	8.1	10.4	13.4	15.9	18.3	20.7	25.4	30.2	39.8
			上弁 /グ型)	9.8	3.5	4.1	5.2	6.7	7.9	9.1	10.4	12.7	15.1	19.9

送 水 口	38.3
-------	------

配管の摩擦損失水頭表 (100m当たり)

FIG. 81 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
呼び径 流量 〔/min	65	80	100	125	150	200
400	4.89	2. 16	0. 60	0. 22	0.09	_
800	17.62	7.80	2. 15	0.79	0.34	0.09
1000	26. 63	11.79	3. 25	1. 19	0. 51	0. 13
1200	37. 31	16. 52	4. 55	1. 67	0.71	0. 19
2000	95. 99	42.51	11.70	4.30	1.84	0.48
2400	134. 50	59. 56	16. 40	6. 03	2. 57	0.68